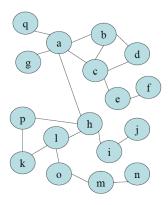
Foundations of Query Languages

Dr. Fang Wei

Lehrstuhl für Datenbanken und Informationssysteme Universität Freiburg

SS 2011

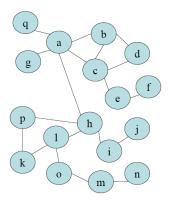
Intractable Problems



Definition

Independent Set (IS): Let G = (V, E) be a graph. $V' \subseteq V$ is an independent set if and only if $\forall v_1, v_2 \in V'$, $(v_1, v_2) \notin E$, and |V'| is maximal.

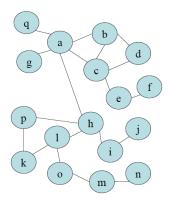
- The problem of Independent Set is NP-Complete.
- IS problem can be solved in linear time, if the underlying graph has bounded treewidth.

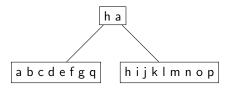


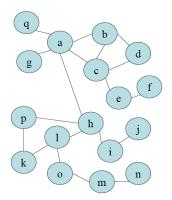
Tree Decomposition

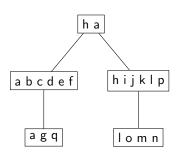
Given a graph G = (V, E), a tree decomposition of G is a tree T, in where every node X_i in T consists of a set of vertices in V, such that:

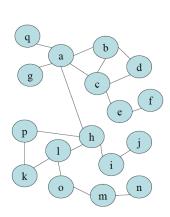
- **1** For every $v \in V$, there exists a tree node X_i in T, such that $v \in X_i$.
- 2 For every edge $(v, w) \in E$, there exists a tree node X_i containing both v and w.
- For every v: the tree nodes that contain v form a connected subtree of T. (connectedness condition).

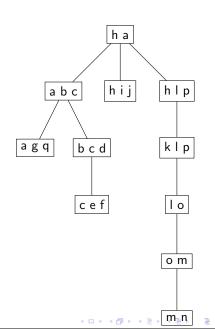


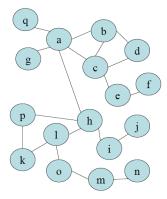






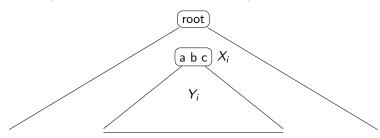






Treewidth

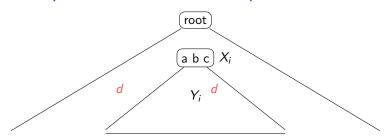
- The width of a tree decomposition $T \text{ is } max(\{|X|-1: X \text{ node in } T\}).$ (max node size -1)
- The treewidth is the minimum width over all tree decompositions of G.



Given a node X_i in T, Y_i is the set of nodes that are descendants of X_i . $G(Y_i)$ be the graph induced by Y_i .

When we have an independent set W of $G(Y_i)$, and want to extend it to an independent set of G, then important is only what vertices in X_i belong to W, not what vertices in $Y_i - X_i$ belong to W. Of the latter, only the number of vertices in W is important.

Intuition: if a vertex $d \in Y_i$ and d occurs out of Y_i , then d must occur in X_i (connectedness condition!) As a consequence, those vertices in $Y_i - X_i$ will not affect the extended independent set any more.

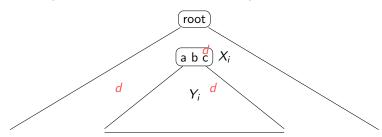


Given a node X_i in T, Y_i is the set of nodes that are descendants of X_i . $G(Y_i)$ be the graph induced by Y_i .

When we have an independent set W of $G(Y_i)$, and want to extend it to an independent set of G, then important is only what vertices in X_i belong to W, not what vertices in $Y_i - X_i$ belong to W. Of the latter, only the number of vertices in W is important.

Intuition: if a vertex $d \in Y_i$ and d occurs out of Y_i , then d must occur in X_i (connectedness condition!) As a consequence, those vertices in $Y_i - X_i$ will not affect the extended independent set any more.

4□ > 4륜 > 4분 > 분 → 9

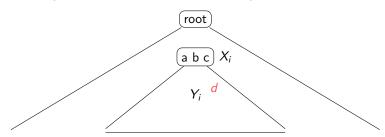


Given a node X_i in T, Y_i is the set of nodes that are descendants of X_i . $G(Y_i)$ be the graph induced by Y_i .

When we have an independent set W of $G(Y_i)$, and want to extend it to an independent set of G, then important is only what vertices in X_i belong to W, not what vertices in $Y_i - X_i$ belong to W. Of the latter, only the number of vertices in W is important.

Intuition: if a vertex $d \in Y_i$ and d occurs out of Y_i , then d must occur in X_i (connectedness condition!) As a consequence, those vertices in $Y_i - X_i$ will not affect the extended independent set any more.

 Dr. Fang Wei
 17. Mai 2011
 Seite 10

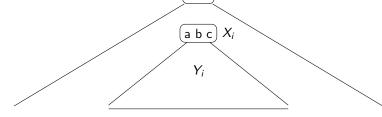


Given a node X_i in T, Y_i is the set of nodes that are descendants of X_i . $G(Y_i)$ be the graph induced by Y_i .

When we have an independent set W of $G(Y_i)$, and want to extend it to an independent set of G, then important is only what vertices in X_i belong to W, not what vertices in $Y_i - X_i$ belong to W. Of the latter, only the number of vertices in W is important.

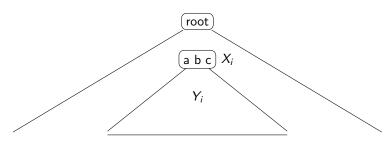
Intuition: if a vertex $d \in Y_i$ and d occurs out of Y_i , then d must occur in X_i (connectedness condition!) As a consequence, those vertices in $Y_i - X_i$ will not affect the extended independent set any more.

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ めへぐ



root

For $Z \subseteq X_i$, define $is_i(Z)$ to be the maximum size of the independent set in $G(Y_i)$ with $W \cap X_i = Z$.

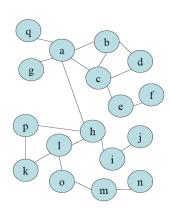


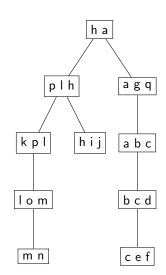
For a leaf node X_i , find all the maximum independent sets $Z \subseteq X_i$ from $G(X_i)$ and set $is_i(Z) = |Z|$.

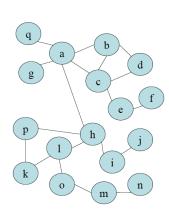
For an internal node X_i with two children X_i and X_k , we set $is_i(Z) =$

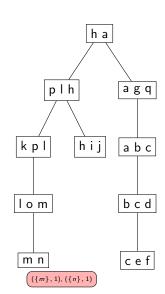
$$\max\{is_j(Z')+is_k(Z'')+|Z\cap(X_i-X_j-X_k)|-Z\cap X_j\cap X_k|\}$$

where $Z \cap X_i = Z' \cap X_i$, $Z \cap X_k = Z'' \cap X_i$ and $\forall v, w \in Z : (v, w) \notin E$.

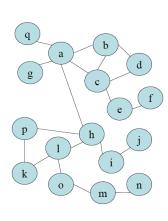


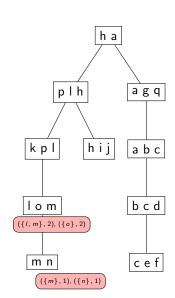


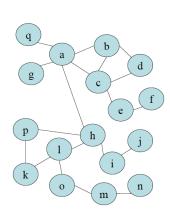


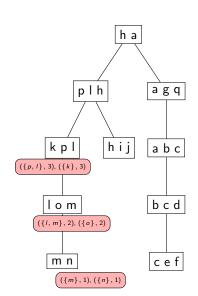


17. Mai 2011 Seite 15 Dr. Fang Wei

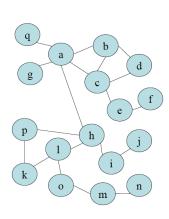


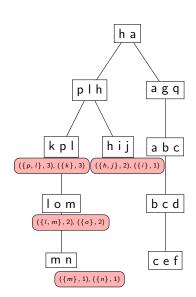




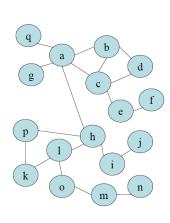


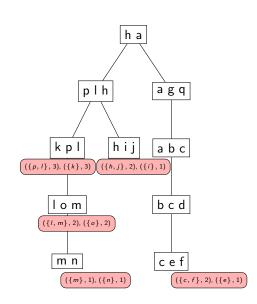
 Dr. Fang Wei
 17. Mai 2011
 Seite 17





 Dr. Fang Wei
 17. Mai 2011
 Seite 18

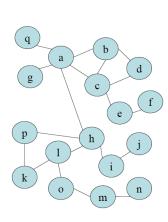


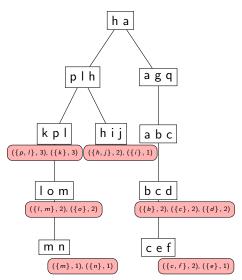


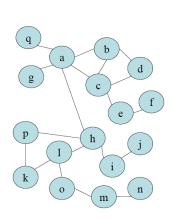
17. Mai 2011

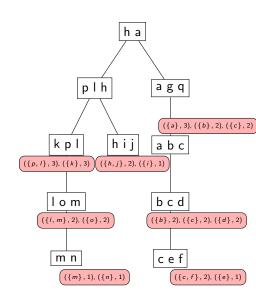
Dr. Fang Wei

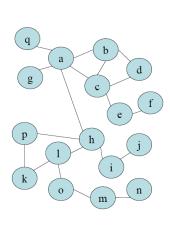
Seite 19

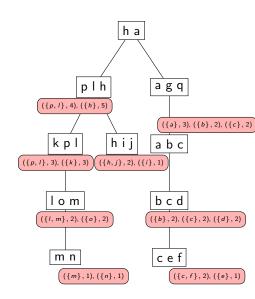






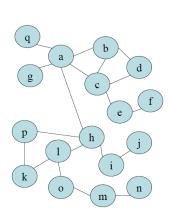


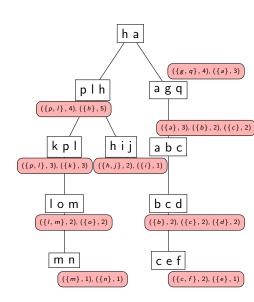




17. Mai 2011

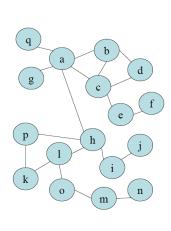
Tree decomposition

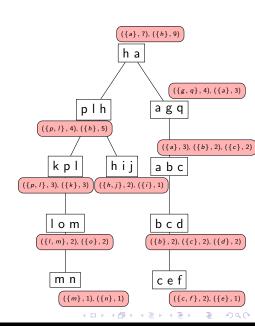


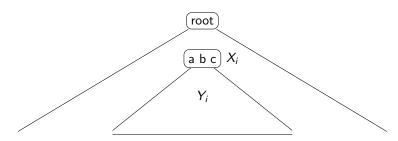


Dr. Fang Wei

Seite 23







So the overall time cost is $2^{tw} * |T|$ where tw is the treewidth of G.